Differentiate $\displaystyle y = e^{k \tan \sqrt{x}}$
$
\begin{equation}
\begin{aligned}
y' =& \frac{d}{dx} (e^{k \tan \sqrt{x}})
\\
\\
y' =& e^{k \tan \sqrt{x}} \frac{d}{dx} (k \tan \sqrt{x})
\\
\\
y' =& e^{k \tan \sqrt{x}} \left[ k \frac{d}{dx} (\tan \sqrt{x}) + (\tan \sqrt{x}) \frac{d}{dx} (k) \right]
\\
\\
y' =& e^{k \tan \sqrt{x}} \left[ k \sec^2 \sqrt{x} \frac{d}{dx} (x)^{\frac{1}{2}} + 0 \right]
\\
\\
y' =& e^{k \tan \sqrt{x}} k \sec^2 \sqrt{x} \cdot \frac{1}{2^{\frac{1}{2}}}
\\
\\
y' =& \frac{e^{k \tan \sqrt{x}} k \sec^2 \sqrt{x} }{2 \sqrt{x}}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment