Sunday, August 19, 2012

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 64

Solve $\displaystyle \frac{1}{r} + \frac{2}{1 - r} = \frac{4}{r^2}$ for $r$.


$
\begin{equation}
\begin{aligned}

\frac{1}{r} + \frac{2}{1 - r} =& \frac{4}{r^2}
&& \text{Given}
\\
\\
\frac{(1 - r) + 2(r)}{r - r^2} =& \frac{4}{r^2}
&& \text{Get the LCD of the left side}
\\
\\
\frac{1 + r}{r - r^2} =& \frac{4}{r^2}
&& \text{Simplify the numerator}
\\
\\
r^2 (1 + r) =& 4(r - r^2)
&& \text{Apply cross multiplication}
\\
\\
r^2 + r^3 =& 4r - 4r^2
&& \text{Apply Distributive Property}
\\
\\
r^3 + 5r^2 - 4r =& 0
&& \text{Combine like terms}
\\
\\
r(r^2 + 5r - 4) =& 0
&& \text{Factor out $r$, then eliminate}
\\
\\
r^2 + 5r =& 4
&& \text{Add 4}
\\
\\
r^2 + 5r + \frac{25}{4} =& 4 + \frac{25}{4}
&& \text{Complete the square: add } \left( \frac{5}{2} \right)^2 = \frac{25}{4}
\\
\\
\left( r + \frac{5}{2} \right)^2 =& \frac{41}{4}
&& \text{Perfect square}
\\
\\
r + \frac{5}{2} =& \pm \sqrt{\frac{41}{4}}
&& \text{Take the square root}
\\
\\
r =& \frac{-5}{2} \pm \sqrt{\frac{41}{4}}
&& \text{Subtract } \frac{5}{2}
\\
\\
r =& \frac{-5 + \sqrt{41}}{2} \text{ and } r = \frac{-5 - \sqrt{41}}{2}
&& \text{Solve for } r



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...