Wednesday, October 10, 2012

r=1-sintheta Find the points of horizontal and vertical tangency (if any) to the polar curve.

r=1-sin theta
To solve, express the polar equation in parametric form. To convert it to parametric equation, apply the formula
x = rcos theta
y=r sin theta
Plugging in r=1-sin theta , the formula becomes:
x=(1-sin theta)cos theta=cos theta -sin theta cos theta
y = (1-sin theta)sin theta=sin theta -sin^2 theta
So the equivalent parametric equation of r= 1-sin theta is:
x=cos theta -sin theta cos theta
y=sin theta -sin^2 theta
Then, take the derivative of x and y with respect to theta.
dx/(d theta) = -sintheta - (sintheta*(-sintheta) + costheta*costheta)
dx/(d theta)=-sintheta+sin^2theta-cos^2theta
dy/(d theta) = costheta - 2sinthetacostheta
Take note that the slope of the tangent is equal to dy/dx.
m= (dy)/(dx)
To get the dy/dx of a parametric equation, apply the formula:
dy/dx = (dy/(d theta))/(dx/(d theta))
When the tangent line is horizontal, the slope of the tangent is zero.
0 = (dy/(d theta)) / (dx/(d theta))
This implies that the polar curve will have a horizontal tangent when dy/(d theta)=0 and dx/(d theta) !=0. 
Setting the derivative of y yields:
dy/(d theta) = 0
costheta - 2sinthetacostheta=0
costheta(1 - 2sintheta) =0
costheta = 0
theta=pi/2,(3pi)/2
1-2sintheta=0
-2sintheta=-1
sintheta=1/2
theta=pi/6,(5pi)/6
Take note that at theta=pi/2 , the value of dx/(d theta) is zero. Since both dy/(d theta) and dx/(d theta)  are zero, the slope at this value of theta is indeterminate.
m=0/0   (indeterminate)
So the polar curve has horizontal tangents at:
theta_1 = pi/6 + 2pin
theta_2= (5pi)/6+2pin
theta_3= (3pi)/2+2pin
where n is any integer.
To determine the points (r, theta) , plug-in the values of theta to the polar equation.
r=1-sin theta
theta_1 = pi/6 + 2pin
r_1=1-sin(pi/6 + 2pin)=1-sin(pi/6) = 1-1/2=1/2
theta_2= (5pi)/6+2pin
r_2=1-sin((5pi)/6+2pin)=1-sin((5pi)/6)= 1 -1/2=1/2
theta_3= (3pi)/2+2pin
r_3=1-sin((3pi)/2+2pin)=1-sin((3pi)/2)=1-(-1)=2
Therefore, the polar curve has horizontal tangent at points
(1/2, pi/6+2pin) ,   (1/2, (5pi)/6+2pin) ,  and  (2, (3pi)/2+2pin) .
Moreover, when the tangent line is vertical, the slope is undefined.
u n d e f i n e d =(dy/(d theta)) / (dx/(d theta))
This implies that the polar curve will have vertical tangent when dx/(d theta)=0 and dy/(d theta)!=0 .
Setting the derivative of x equal to zero yields:
dx/(d theta) = 0
-sintheta+sin^2theta-cos^2theta=0
-sin theta + sin^2 theta-(1-sin^2 theta) = 0
2sin^2 theta -sin theta -1=0
(2sin theta +1)(sin theta -1) = 0
2sin theta + 1=0
sin theta=-1/2
theta = (7pi)/6,(11pi)/6
sin theta -1=0
sin theta=1
theta=pi/2
Take note that at theta =pi/2 , both dy/(d theta ) and dx/(d theta) are zero. So the slope is indeterminate at this value of theta.
m=0/0  (indeterminate)
So the polar curve has vertical tangents at:
theta_1 =(7pi)/6+2pin
theta_2=(11pi)/6+2pin
where n is any integer.
To determine the points (r, theta) , plug-in the values of theta to the polar equation.
r=1-sin theta
theta_1=(7pi)/6+2pin
r_1=1-sin((7pi)/6+2pin)=1-sin((7pi)/6)=1-(-1/2)=3/2
theta_2=(11pi)/6+2pin
r_2=1-sin((11pi)/6+2pin)=1-sin((11pi)/6)=1-(-1/2)=3/2
Therefore, the polar curve has vertical tangent at points (3/2, (7pi)/6+2pin) and (3/2, (11pi)/6+2pin) .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...