Thursday, October 11, 2012

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 42

Determine the critical numbers of the function $g(\theta) = 4 \theta - \tan \theta$


$
\begin{equation}
\begin{aligned}

g'(\theta) =& 4 \frac{d}{d \theta} (\theta) - \frac{d}{d \theta} (\tan \theta)
\\
\\
g'(\theta) =& (4)(1) - \sec^2 \theta
\\
\\
g'(\theta) =& 4 - \sec^2 \theta

\end{aligned}
\end{equation}
$


Solving for critical numbers


$
\begin{equation}
\begin{aligned}

& g'(\theta) = 0
\\
\\
& 4 - \sec^2 \theta = 0
\\
\\
& \sec^2 \theta = 4
\\
\\
& \sqrt{(\sec \theta)^2} = \pm \sqrt{4}
\\
\\
& \sec \theta = \pm 2
\\
\\
& \frac{1}{\cos \theta} = \pm 2
\\
\\
& \cos \theta = \pm \frac{1}{2}

\end{aligned}
\end{equation}
$


Based from the unit circle, the values of $\displaystyle \cos \theta = \pm \frac{1}{2} $ are $\displaystyle \frac{\pi}{3} + 2 \pi n, \frac{5 \pi}{3} + 2 \pi n, \frac{4 \pi}{3} + 2 \pi n$ and $\displaystyle \frac{2 \pi}{3} + 2 \pi n$ (where $n$ is any integer).

Therefore, the critical numbers are $\displaystyle \frac{\pi}{3} + 2 \pi n, \frac{5 \pi}{3} + 2 \pi n, \frac{4 \pi}{3} + 2 \pi n$ and $\displaystyle \frac{2 \pi}{3} + 2 \pi n$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...