Tuesday, January 15, 2013

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 32

Solve the system of equations $\begin{equation}
\begin{aligned}

-2x + 5y + z =& -3 \\
5x + 14y - z =& -11 \\
7x + 9y - 2z =& -5

\end{aligned}
\end{equation}
$. If the system is inconsistent or has dependent equations, say so.


$
\begin{equation}
\begin{aligned}

-2x + 5y + z =& -3
&& \text{Equation 1}
\\
5x + 14y - z =& -11
&& \text{Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

3x + 19y \phantom{-z} =& -14
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-4x + 10y + 2z =& -6
&& 2 \times \text{ Equation 1}
\\
7x + 9y - 2z =& -5
&& \text{Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

3x + 19y \phantom{-2z} =& -11
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

3x + 19y =& -14
&& \text{New Equation 2}
\\
3x + 19y =& -11
&& \text{New Equation 3}

\end{aligned}
\end{equation}
$


We write the equations in two variable as a system.


$
\begin{equation}
\begin{aligned}

3x + 19y =& -14
&&
\\
-3x - 19y =& 11
&& -1 \times \text{ Equation 5}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{3x - 19} 0 =& -3
&& \text{Add; False}
\end{aligned}
\end{equation}
$


Adding the two new equations give false statement, $0 = -3$. It shows that it has no solution. Thus, the system is inconsistent. The solution set is $\cancel{0}$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...