Suppose that a cylindrical tank holds a 100,000 gallons of water, which can be drained from the bottom
of the tank in an hour, then Torricelli's Law gives the volume $V$ of water remaining in the tank after
$t$ minutes as
$\quad \displaystyle V(t) = 100,000 \left( 1 - \frac{t}{60} \right)^2 \qquad 0 \leq t \leq 60$
Determine the rate at which the water is flowing out of the tank for times $t =$ 0, 10, 20, 30, 40, 50 and 60 $min$.
Find the flow rate and the amount of water remaining in the tank. Also, determine the time at which the flow rate is
least and greatest.
Based from the definition,
$f'(a) = \lim\limits_{h \to 0} \frac{f(a+h)-f(a)}{h}$
$
\begin{equation}
\begin{aligned}
\nu'(t) & = \lim\limits_{h \to 0} \frac{\nu ( t + h ) + \nu (t)}{h}\\
\nu'(t) & = \lim\limits_{h \to 0} \frac{100,000 \left( 1 - \frac{(t+h)}{60}\right)^2 - \left[ 100,000 \left( 1 - \frac{t}{60} \right)^2\right]}{h}\\
\nu'(t) & = \lim\limits_{h \to 0} \frac{100,000 \left( \frac{60-t-h}{60}\right)^2 - 100,000 \left( \frac{60-t}{60} \right)^2}{h}\\
\nu'(t) & = \lim\limits_{h \to 0} \frac{\frac{100,000}{60^2}[(60-t-h)^2 - (60-t)^2]}{h}\\
\nu'(t) & = \lim\limits_{h \to 0} \frac{250[\cancel{60^2}-\cancel{60t}-60h-\cancel{60t}+\cancel{t^2}
+th-60h+th+h^2-\cancel{60^2}+\cancel{60t}+\cancel{60t}-\cancel{t^2}]}{9h}\\
\nu'(t) & = \lim\limits_{h \to 0} \frac{250[-120h+2th+h^2]}{9h}\\
\nu'(t) & = \lim\limits_{h \to 0} \frac{250\cancel{h}[-120+2t+h]}{9\cancel{h}}\\
\nu'(t) & = \lim\limits_{h \to 0} \left[ \frac{-10000}{3} + \frac{500t}{9}+h\right]\\
\nu'(t) & = \frac{-10000}{3} + \frac{500t}{9} + 0\\
\nu'(t) & = \frac{-10000}{3} + \frac{500t}{9} \frac{\text{volume}}{\text{min}}
\end{aligned}
\end{equation}
$
$\displaystyle V(t) = 100,000 \left( 1-\frac{t}{60}\right)^2$
Flow rate, $\displaystyle \nu(t) = \frac{10,000}{3} + \frac{500t}{9}$
$
\begin{array}{|c|c|c|}
\hline
t\text{(min)} & V(t) & \text{Flow rate, } \nu'(t)\\
\hline\\
0 & 100,000 & -3333.\overline{33}\\
\\
10 & 69444.\overline{44} & -2777.78\\
\\
20 & 44444.\overline{44} & -2222.\overline{22}\\
\\
30 & 25000 & -1666.67\\
\\
40 & 11111.\overline{11} & -1111.11\\
\\
50 & 2777.78 & -555.56\\
\\
60 & 0 & 0\\
\\
\hline
\end{array}
$
The amount of water remaining in the tank can be computed by substituting the values of $t$
to the equation $V(t)$. Also, flow rates are obtained by substituting the values of $t$ in the equation of $\nu'(t)$.
The negative values represent how fast the water is flowing out of the tank until such time that all water is drained from the tank.
Flow rate is greatest at $t=0 $ while it is least at $t=60$.
Sunday, September 22, 2013
Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 44
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment