Thursday, October 17, 2013

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 19

intsqrt(1+x^2)/xdx
Let's evaluate using the trigonometric substitution,
Let x=tan(theta)
dx=sec^2(theta)d theta
=intsqrt(1+tan^2(theta))/(tan(theta))*sec^2(theta) d theta
Now use the identity: 1+tan^2(x)=sec^2(x)
=intsqrt(sec^2(theta))/tan(theta)*sec^2(theta)d theta
=intsec(theta)/tan(theta)*sec^2(theta)d theta
=int(sec(theta)(1+tan^2(theta)))/tan(theta) d theta
=int((sec(theta))/tan(theta)+(sec(theta)tan^2(theta))/tan(theta))d theta
=intsec(theta)/tan(theta)d theta+intsec(theta)tan(theta)d theta
=int(1/cos(theta))*(1/(sin(theta)/cos(theta)))d theta+intsec(theta)tan(theta)d theta
=int1/sin(theta) d theta+intsec(theta)tan(theta)d theta
=intcsc(theta)d theta+intsec(theta)tan(theta)d theta
Now using the standard integrals,
intcsc(x)dx=ln|csc(x)-cot(x)
intsec(x)tan(x)dx=sec(x)
=ln|csc(theta)-cot(theta)|+sec(theta)
Now substitute back x=tan(theta)
=>cot(theta)=1/tan(theta)=1/x
1+tan^2(theta)=sec^2(theta)
=>1+x^2=sec^2(theta)
=>sec(theta)=sqrt(1+x^2)
1+cot^2(theta)=csc^2(theta)
=>1+(1/x)^2=csc^2(theta)
csc(theta)=sqrt(1+x^2)/x
:.intsqrt(1+x^2)/xdx=ln|sqrt(1+x^2)/x-1/x|+sqrt(1+x^2)+C ,C is a constant

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...