Wednesday, October 16, 2013

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 34

Differentiate $f(x) = \ln \ln \ln x$ and find the domain of $f$
For the domain of $f$, we want $\ln \ln x > 0$

$
\begin{equation}
\begin{aligned}
\ln \ln x &> 0\\
\\
e^{\ln \ln x} &> e^0\\
\\
\ln x &> 1\\
\\
e^{\ln x} &> e^1\\
\\
x &> e^1
\end{aligned}
\end{equation}
$

Therefore, the domain of $f$ is $(e, \infty)$
Solving for $f'$

$
\begin{equation}
\begin{aligned}
f'(x) &= \frac{d}{dx} \ln \ln \ln x\\
\\
f'(x) &= \frac{1}{\ln\ln x} \cdot \frac{d}{dx} (\ln \ln x)\\
\\
f'(x) &= \frac{1}{\ln \ln x} \cdot \frac{1}{\ln x} \frac{d}{dx} \ln x\\
\\
f'(x) &= \frac{1}{\ln \ln x} \cdot \frac{1}{\ln x} \cdot \frac{1}{x}\\
\\
f'(x) &= \frac{1}{ x \ln x \ln \ln x}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...