Sunday, November 10, 2013

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 22

Determine the determinant of the matrix $\displaystyle \left[ \begin{array}{ccc}
-2 & \displaystyle \frac{-3}{2} & \displaystyle \frac{1}{2} \\
2 & 4 & 0 \\
\displaystyle \frac{1}{2} & 2 & 1
\end{array} \right]$. State whether the matrix has an inverse, but don't calculate the inverse.

Let

$ A = \displaystyle \left[ \begin{array}{ccc}
-2 & \displaystyle \frac{-3}{2} & \displaystyle \frac{1}{2} \\
2 & 4 & 0 \\
\displaystyle \frac{1}{2} & 2 & 1
\end{array} \right]$

$\displaystyle \det (A) = \left[ \begin{array}{ccc}
-2 & \displaystyle \frac{-3}{2} & \displaystyle \frac{1}{2} \\
2 & 4 & 0 \\
\displaystyle \frac{1}{2} & 2 & 1
\end{array} \right] = 2 \left| \begin{array}{cc}
4 & 0 \\
2 & 1
\end{array} \right| - \left( \frac{-3}{2} \right) \left| \begin{array}{cc}
2 & 0 \\
\displaystyle \frac{1}{2} & 1
\end{array} \right| + \frac{1}{2} \left| \begin{array}{cc}
2 & 4 \\
\displaystyle \frac{1}{2} & 2
\end{array} \right| = -2 (4 \cdot 1 - 0 \cdot 2) - \left( \frac{-3}{2} \right) \left(2 \cdot 1 - 0 \cdot \frac{1}{2} \right) + \frac{1}{2} \left(2 \cdot 2 - 4 \cdot \frac{1}{2} \right)$

$\det (A) = -8 + 3 + 1$

$\det (A) = -4$

The given matrix has an inverse.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...