Sunday, December 29, 2013

College Algebra, Chapter 8, 8.1, Section 8.1, Problem 56

Suppose that a telescope has $200$-in mirror that is constructed in a parabolic shape that collects light from the stars and focuses it at the prime focus, that is, the focus of the parabola. The mirror is $3.79$-in deep at its center. Determine the distance from the vertex to the focus.



If we let the vertex of the parabola lies on the origin and halfway between $200$-in. Then its equation is $x^2 = 4py$ where the focus is located at $(0, p)$ and endpoints at $(100, 3.79)$ and $(-100, 3.79)$. Hence, the endpoints are the solution of the equation, so..


$
\begin{equation}
\begin{aligned}

x^2 =& 4py
\\
\\
(100)^2 =& 4p(3.79)
\\
\\
p =& 659.6306 \text{-in}

\end{aligned}
\end{equation}
$


It shows that the distance from the vertex to the focus is approximately $660$ inches.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...