Sunday, December 1, 2013

College Algebra, Exercise P, Exercise P.1, Section Exercise P.1, Problem 8

Suppose a mountain climber models the temperature $T (\text{in }^\circ F)$ at elevation $h(\text{in ft})$ by $T = 70-0.003 h$
a.) Find the temperature $T$ at an elevation of 1500 ft.

Given:
$h = 1500 \text{ft} - $ elevation
$T = 70 - 0.003 h$ model

So,

$
\begin{equation}
\begin{aligned}
T &= 70 - 0.003 (1500) && \text{Substitute } h = 1500\\
\\
T &= 70 - 4.5 && \text{Simplify}\\
\\
T &= 65.5 ^\circ F && \text{Temperature at an elevation of 1500 ft}
\end{aligned}
\end{equation}
$


b.) If the temperature is $64 ^\circ F$, what is the elevation?

Given:
$T = 64 ^\circ F -$ Temperature
$T = 70 - 0.003 h$ model

Solving $T = 70 - 0.003 h$ for $h$

$
\begin{equation}
\begin{aligned}
T - 70 &= 70 - 0.003 h - 70 && \text{Subtract both sides by } h\\
\\
\frac{T - 70}{-0.003} &= \frac{\cancel{-0.003}h}{\cancel{-0.003}} && \text{Divide both sides by -0.003}\\
\\
\frac{-70 - T}{0.003} &= h && \text{model}\\
\\
h &= \frac{70-64}{0.003} \text{ft} && \text{Substitute } T = 64 ^\circ F\\
\\
h &= 2000 \text{ft} && \text{Elevation if the temperation is } 64 \circ F
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...