Tuesday, April 7, 2015

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 50

Determine the determinant of the matrix $\displaystyle A = \left[
\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 2 \\
1 & 2 & 1 & 2
\end{array}
\right]$ and if possible, the inverse of the matrix.

Using rows and columns transformation,

If we add $-1$ times column 1 to column 3, we get

$\displaystyle \left[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 2 \\
1 & 2 & 0 & 2
\end{array}
\right]$

So,

$\displaystyle \det (A) = 1 \left|
\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & 2 \\
2 & 0 & 2
\end{array}
\right|$

Now, adding $-1$ times column 1 to column 3 in this determinant gives us


$
\begin{equation}
\begin{aligned}

\det (A) =& 1 \left| \begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
2 & 0 & 0
\end{array} \right| \qquad \text{Expand this by column 3}
\\
\\
\det (A) =& 1 (1) \left| \begin{array}{cc}
1 & 0 \\
2 & 0
\end{array} \right|
\\
\\
\det (A) =& 1(1 \cdot 0 - 0 \cdot 2)
\\
\\
\det (A) =& 0

\end{aligned}
\end{equation}
$


Since the determinant of $A$ is zero, $A$ can't have an inverse, by the invertibility criterion.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...