Sunday, May 3, 2015

int_0^3 sqrt(x^2+16) dx Use integration tables to evaluate the definite integral.

Recall indefinite integral follows int f(x) dx = F(x)+C
 where:
f(x) as the integrand
F(x) as the antiderivative of f(x)
C as the constant of integration.
From the table of integrals, we follow the formula:
sqrt(x^2+-a^2) dx = 1/2xsqrt(x^2+-a^2)+-1/2a^2ln|x+sqrt(x^2+-a^2)|
 From the given problem int_0^3 sqrt(x^2+16) dx , we have a  addition sign (+) in between terms inside the square root sign. Then, we follow the formula:
int sqrt(x^2+a^2) dx = 1/2xsqrt(x^2+a^2)+1/2a^2ln|x+sqrt(x^2+a^2)|
 Take note that we can express  16 = 4^2 then the given problem becomes:int_0^3 sqrt(x^2+4^2) dx .
 The x^2 +4^2 resembles the x^2 +a^2 in the formula. Then by comparison, the corresponding values are:  x=x  and a=4.
Plug-in x=x and a=4 on the formula, we get:
int_0^3 sqrt(x^2+16) dx =[1/2xsqrt(x^2+4^2)+1/2*4^2ln|x+sqrt(x^2+4^2)| ]|_0^3
=[1/2xsqrt(x^2+16)+1/2*16ln|x+sqrt(x^2+16)|]|_0^3
=[1/2xsqrt(x^2+16)+8ln|x+sqrt(x^2+16)|]|_0^3
Apply definite integral formula:  F(x)|_a^b = F(b) - F(a) .
[1/2xsqrt(x^2+16)+8ln|x+sqrt(x^2+16)|]|_0^3
=[1/2*3sqrt(3^2+16)+8ln|3+sqrt(3^2+16)|]-[1/2*0sqrt(0^2+16)+8ln|0+sqrt(0^2+16)|]
=[3/2sqrt(9+16)+8ln|3+sqrt(9+16)|]-[0*sqrt(0+16)+8ln|0+sqrt(0+16)|]
=[3/2*5+8ln|3+5|]-[0*4+8ln|0+4|]
=[15/2+8ln|8|]-[0+8ln|4|]
=15/2+8ln|8| -0-8ln|4|
=15/2+8ln|8| - 8ln|4|
=15/2+8(ln|8| - ln|4|)
Apply natural logarithm property: ln(x)- ln(y) = ln(x/y) .
=15/2+8ln|8/4|
=15/2+8ln|2|
Apply natural logarithm property:  n*ln(x) = ln(x^n) .
=15/2+ln|2^8|
=15/2+ln|256|  or 13.05 ( approximated value)
 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...