Wednesday, March 9, 2016

Single Variable Calculus, Chapter 3, 3.9, Section 3.9, Problem 26

Estimate $\sin 1^\circ$ by using linear approximation or differentials
Using Linear Approximation
$L(x) = f(a) + f'(a)(x-a)$
Let $\displaystyle f(x) = \frac{1}{x}$, $x = a = 1000$


$
\begin{equation}
\begin{aligned}
f(a) = f(1000) &= \frac{1}{1000}\\
\\
f'(a) = f'(1000) &= \frac{d}{dx} \left( \frac{1}{x} \right)\\
\\
f'(1000) &= \frac{(x) \frac{d}{dx} (1) - (1) \frac{d}{dx} (x) }{x^2}\\
\\
f'(1000) &= \frac{-(1)(1)}{x^2}\\
\\
f'(1000) &= \frac{-1}{x^2}\\
\\
f'(1000) &= \frac{-1}{(1000)^2}
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
L(x) & = \frac{1}{1000} + \left( \frac{-1}{(1000)^2}\right) (x - 1000)\\
\\
L(x) & = \frac{1}{1000} - \frac{x+1000}{(1000)^2}\\
\\
L(x) & = \frac{1000-x+1000}{(1000)^2}\\
\\
L(x) & = \frac{2000-x}{(1000)^2}\\
\\
L(x) & = \frac{2000-1002}{(1000)^2}\\
\\
L(x) & = \frac{998}{(1000)^2}\\
\\
L(x) & = \frac{998}{1000000}\\
\\
L(x) & = 0.000998 \quad \text{or} \quad L(x) = 9.98 \times 10^{-4}
\end{aligned}
\end{equation}
$


So,
$\displaystyle \frac{1}{1002} \approx 9.98 \times 10^{-4}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...