Friday, March 24, 2017

36^(5x+2)=(1/6)^(11-x) Solve the equation.

To evaluate the given equation 36^(5x+2)=(1/6)^(11-x) , we may apply 36=6^2  and  1/6=6^(-1) . The equation becomes:
(6^2)^(5x+2)=(6^(-1))^(11-x)
Apply Law of Exponents: (x^n)^m = x^(n*m) .
6^(2*(5x+2))=6^((-1)*(11-x))
6^(10x+4)=6^(-11+x)
Apply the theorem: If b^x=b^y then x=y , we get:
10x+4=-11+x
Subtract x from both sides of the equation.
10x+4-x=-11+x-x
9x+4=-11
Subtract 4 from both sides of the equation.
9x+4-4=-11-4
9x=-15
Divide both sides by 9 .
9x/9=-15/9
x=-15/9
Simplify.
x=-5/3
Checking: Plug-in x=-5/3 on 36^(5x+2)=(1/6)^(11-x) .
36^(5(-5/3)+2)=?(1/6)^(11-(-5/3))
36^(-25/3+2)=?(1/6)^(11+5/3)
36^(-25/3+6/3)=?(1/6)^(33/3+5/3)
36^(-19/3)=?(1/6)^(38/3)
(6^2)^(-19/3)=?(6^(-1))^(38/3)
6^(2*(-19/3))=?6^((-1)*38/3)
6^(-38/3)=6^(-38/3)         TRUE
Final answer:
There is no extraneous solution. The x=-5/3 is the real exact solution of the equation 36^(5x+2)=(1/6)^(11-x) . 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...