Sunday, April 30, 2017

College Algebra, Chapter 3, 3.7, Section 3.7, Problem 42

Find the inverse of $\displaystyle f(x) = \frac{x - 2}{x + 2}$

To find the inverse of $f(x)$, we write $y = f(x)$


$
\begin{equation}
\begin{aligned}

y =& \frac{x - 2}{x + 2}
&& \text{Apply Cross Multiplication}
\\
\\
y(x + 2) =& x - 2
&& \text{Expand}
\\
\\
xy + 2y =& x - 2
&& \text{Subtract $x$ and $y$}
\\
\\
xy - x =& -2y - 2
&& \text{Factor out $x$ on the left side, add -2 from the right side}
\\
\\
x(y - 1) =& -2(y + 1)
&& \text{Divide both sides by } (y - 1)
\\
\\
x =& \frac{-2 (y + 1)}{y - 1}
&& \text{Interchange $x$ and $y$}
\\
\\
y =& \frac{-2 (x + 1)}{x - 1}
&&

\end{aligned}
\end{equation}
$


Thus, the inverse of $\displaystyle f(x) = \frac{x - 2}{x + 2}$ is $\displaystyle f^{-1} (x) = \frac{-2 (x + 1)}{x - 1}$ for $x \neq 1$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...