Friday, April 7, 2017

Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 54

Prove that the function $y = Ae^{-x} + Bxe^{-x}$ satisfies the differential equation

$y'' + 2y' + y = 0$

Solving for 1st Derivative


$
\begin{equation}
\begin{aligned}

y' =& \frac{d}{dx} (Ae^{-x}) + \frac{d}{dx} (Bxe^{-x}), \text{ where $A$ and $B$ is constant}
\\
\\
y' =& \frac{d}{dx} \left( \frac{A}{e^x} \right) + \left[ (Bx) \frac{d}{dx} \left( \frac{1}{e^x} \right) + \left( \frac{1}{e^x} \right) \frac{d}{dx} (Bx) \right]
\\
\\
y' =& \left[ \frac{\displaystyle (e^x) \frac{d}{dx} (A) - (A) \frac{d}{dx} (e^x) }{(e^x)^2} \right] + \left[ (Bx) \frac{d}{dx} \left( \frac{1}{e^x} \right) + \left( \frac{1}{e^x} \right) \frac{d}{dx} (Bx) \right]
\\
\\
y' =& \left[ \frac{(e^x) (0) - Ae^x}{e^{2x}} \right] + \left[ (Bx) \left( \frac{-1}{e^x} \right) + \left( \frac{1}{e^x} \right) (B) \right]
\\
\\
y' =& - \frac{A}{e^x} - \frac{Bx}{e^x} + \frac{B}{e^x}
\\
\\
y' =& \frac{-A + B - Bx}{e^x}

\end{aligned}
\end{equation}
$


Solving for 2nd Derivative


$
\begin{equation}
\begin{aligned}

y'' =& \frac{d}{dx} \left( \frac{-A + B - Bx}{e^x} \right)
\\
\\
y'' =& \frac{\displaystyle e^x \frac{d}{dx} (-A + B - Bx) - (-A + B - Bx) \frac{d}{dx} (e^x) }{(e^x)^2}
\\
\\
y'' =& \frac{e^x (-B) - (-A + B - Bx) (e^x) }{e^{2x}}
\\
\\
y'' =& \frac{e^x (-B + A - B + Bx)}{e^{2x}}
\\
\\
y'' =& \frac{Bx + A - 2B}{e^x}


\end{aligned}
\end{equation}
$


Substituting the equations of $y'', y'$ and $y$ in $y'' + 2y' + y = 0$


$
\begin{equation}
\begin{aligned}

& \frac{Bx + A - 2B}{e^x} + 2 \left( \frac{-A + B - Bx}{e^x} \right) + \frac{A + Bx}{e^x} = 0
\\
\\
& \frac{Bx + A - 2B}{e^x} + \frac{-2A + 2B - 2Bx}{e^x} + \frac{A + Bx}{e^x} = 0
\\
\\
& \frac{Bx + A - 2B - 2A + 2B - 2Bx + A + Bx}{e^x} = 0
\\
\\
& \frac{0}{e^x} = 0
\\
\\
& 0 = 0



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...