Thursday, August 8, 2019

y = 1/2 (1/2ln((x+1)/(x-1)) + arctanx) Find the derivative of the function

The derivative of y in terms of x is denoted by  (dy)/(dx) or y’ .
 For the given problem: y = 1/2(1/2ln((x+1)/(x-1)) +arctan(x)) , we may apply the basic differentiation property: d/(dx) c*f(x) = c d/(dx) f(x) .
d/(dx)y =d/(dx) 1/2[1/2ln((x+1)/(x-1)) +arctan(x)]
y'=1/2d/(dx) [1/2ln((x+1)/(x-1)) +arctan(x)]
Apply the basic differentiation property: d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)
y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]
For the derivative of d/(dx)(1/2ln((x+1)/(x-1))) , we may apply again the basic derivative property:d/(dx) c*f(x) = c d/(dx) f(x) .
d/(dx) (1/2ln((x+1)/(x-1)))=1/2d/(dx) (ln((x+1)/(x-1)))
For the derivative part, follow the basic derivative formula for natural logarithm function: d/(dx) ln(u)= (du)/u .
 Let u =(x+1)/(x-1) then du = -2/(x-1)^2 .
 Note For the derivative of u=(x+1)/(x-1) ,we apply the Quotient Rule: d/(dx)(f/g) = (f'*g-f*g')/g^2 .
Let:
f= (x+1) then f'=1
g=(x-1) then g'=1
Then,
d/(dx)((x+1)/(x-1))= (1*(x-1)-(x+1)*(1))/(x-1)^2
                 =((x-1)-(x+1))/(x-1)^2
                  =(x-1-x-1)/(x-1)^2
                =(-2)/(x-1)^2
Applying: d/(dx) ln(u)= (du)/u on:
1/2d/(dx)(ln((x+1)/(x-1)))= (1/2) *(((-2)/(x-1)^2))/(((x+1)/(x-1)))
                                     =(1/2) *((-2)/(x-1)^2)*(x-1)/(x+1)
                                     =(-2(x-1))/(2(x-1)^2(x+1))
Cancel common factors 2 and (x-1) from top and bottom:
(-2(x-1))/(2(x-1)^2(x+1)) =-1/((x-1)(x+1))
Recall (x-1)*(x+1) = x^2-x+x-1 = x^2-1 then the derivative becomes:
1/2d/(dx)(ln((x+1)/(x-1)))=-1/(x^2-1)
 
For the derivative of d/(dx)(arctan(x)) , we apply basic derivative formula for inverse tangent:
d/(dx)(arctan(x))=1/(x^2+1)
 
Combining the results, we get:
y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]
y'=(1/2) [-1/(x^2-1) +1/(x^2+1)]
y' =(1/2) [-1/(x^2-1) *(x^2+1)/(x^2+1) +1/(x^2+1)*(x^2-1)/(x^2-1)]
y' =(1/2) [(-(x^2+1) +(x^2-1))/((x^2-1) (x^2+1))]
y' =(1/2) [(-x^2-1+x^2-1)/((x^2-1) (x^2+1))]
y' =(1/2) [(-2)/((x^2-1) (x^2+1))]
y' =(-1)/((x^2-1) (x^2+1))
or
y'= (-1)/(x^4-1)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...