Thursday, January 16, 2020

int sqrt(16-4x^2)dx Find the indefinite integral

 Given ,
int sqrt(16-4x^2)dx
This Integral can be solved by using the Trigonometric substitutions  (Trig substitutions)
For sqrt(a-bx^2) we have to take x= sqrt(a/b) sin(u)
 
so here , For
int sqrt(16-4x^2)dx -----(1)
 x can be given as
x= sqrt(16/4) sin(u)= sqrt(4) sin(u) = 2sin(u)
so, x= 2sin(u) => dx = 2 cos(u) du
Now substituting x in (1) we get,
int sqrt(16-4x^2)dx
=int sqrt(16-4(2sin(u))^2) (2 cos(u) du)
= int sqrt(16-4*4(sin(u))^2) (2 cos(u) du)
= int sqrt(16-16(sin(u))^2) (2 cos(u) du)
= int sqrt(16(1-(sin(u))^2)) (2 cos(u) du)
= int sqrt(16(cos(u))^2) (2 cos(u) du)
= int (4cos(u)) (2 cos(u) du)
= int 8cos^2(u) du
= 8 int cos^2(u) du
= 8 int (1+cos(2u))/2 du
= (8/2) int (1+cos(2u)) du
= 4 int (1+cos(2u)) du
= 4 [int 1 du +int cos(2u) du]
= 4 [u+(1/2)(sin(2u))] +c  
but x= 2sin(u)
=> (x/2)= sin(u)
=> u= sin^(-1) (x/2)
so,
4 [u+(1/2)(sin(2u))] +c
=4 [sin^(-1) (x/2)+1/2sin(2(sin^(-1) (x/2)))] +c  
so,
int sqrt(16-4x^2)dx
=4sin^(-1) (x/2)+2sin(2(sin^(-1) (x/2))) +c

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...