Sunday, January 12, 2020

Single Variable Calculus, Chapter 7, Review Exercises, Section Review Exercises, Problem 48

Prove that $\displaystyle \frac{d}{dx} \left( \frac{1}{2} \tan^{-1} x + \frac{1}{4} \ln \frac{(x + 1)^2}{x^2 + 1} \right) = \frac{1}{(1 + x)(1 + x^2)}$

Solving for the left-hand side of the equation


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} \left( \frac{1}{2} \tan^{-1} x + \frac{1}{4} \ln \frac{(x + 1)^2}{x^2 + 1} \right) =& \frac{1}{2} \frac{d}{dx} (\tan^{-1} x) + \frac{1}{4} \ln (x + 1)^2 - \frac{1}{4} \ln (x^2 + 1)
\\
\\
=& \frac{1}{2} \frac{d}{dx} (\tan^{-1} x) + \frac{2}{4} \frac{d}{dx} [\ln (x + 1)] - \frac{1}{4} \frac{d}{dx} [\ln (x^2 + 1)]
\\
\\
=& \frac{1}{2} \cdot \frac{1}{ 1 +x^2} + \frac{1}{2} \cdot \frac{1}{x + 1} \frac{d}{dx} (x + 1) - \frac{1}{4} \cdot \frac{1}{x^2 + 1} \frac{d}{dx} (x^2 + 1)
\\
\\
=& \frac{1}{2(1 + x^2)} + \frac{1}{2(x + 1)} - \frac{1}{4(x^2 + 1)} \cdot 2x
\\
\\
=& \frac{1}{2 (1 + x^2)} + \frac{1}{2(x + 1)} - \frac{2x}{4 (x^2 + 1)}
\\
\\
=& \frac{1}{2 (1 + x^2)} + \frac{1}{2(x + 1)} - \frac{x }{2 (x^2 + 1)}
\\
\\
=& \frac{1}{2} \left( \frac{1}{1 + x^2} + \frac{1}{x + 1} - \frac{x}{x^2 + 1} \right)
\\
\\
=& \frac{1}{2} \left( \frac{1 - x}{x^2 + 1} + \frac{1}{x + 1} \right)
\\
\\
=& \frac{1}{2} \left[ \frac{(1 - x)(x + 1) + x^2 + 1}{(x^2 + 1)(x + 1)} \right]
\\
\\
=& \frac{1}{2} \left[ \frac{\cancel{x} + 1 - \cancel{x^2} - \cancel{x} + \cancel{x^2} + 1}{(x^2 + 1) (x + 1)} \right]
\\
\\
=& \frac{1}{\cancel{2}} \left[ \frac{\cancel{2}}{(x^2 + 1) (x + 1)} \right]
\\
\\
=& \frac{1}{(x^2 + 1) (x + 1)}
\\
\\
& \text{or}
\\
\\
=& \frac{1}{(1 + x) (1 + x^2)}




\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...