I assume that you are asking about results that either lie outside a confidence interval, or results during a hypothesis test that lie in the critical region (tail.)
When creating a confidence interval we start with a point estimate for the population parameter we are interested in. For example, if we want to know the average height we might assume that the average from a random sample of sufficient size is a decent point estimate.
Understanding that the point estimate is not likely to exactly match the population parameter, we introduce an error term. This is added to and subtracted from the point estimate to create a confidence interval. The error term includes the standard error of the measurement, as well as a factor that is derived from the confidence level we want to achieve. (The larger the confidence, the larger the interval will be.)
If a secondary test gives results outside this confidence interval, is the result "wrong"? Not necessarily. Suppose the interval was created with a 95% confidence level. Thus we are 95% certain that the population parameter lies within the interval. One out of every twenty samples will have an estimate outside the interval. The true population parameter would lie outside the interval 5% of the time.
If we are doing a hypothesis test, in essence we are creating a confidence interval centered on the reported or accepted value of the parameter. Then we see if our sample statistic lies in that interval. If it does, we assume that the population parameter is as stated. If our sample statistic lies outside the interval (in the critical region), we have evidence to show that the given population parameter is incorrect.
In running a hypothesis test we run the risk of two types of error (assuming the samples are created correctly, etc...) A type I error is when we say that the purported parameter is incorrect, when it is actually correct. We have a lot of control over this type of error, as the probability of this type of error is equal to our confidence level. (I.e. at the 95% confidence level, the chance for a type I error is 5%.)
A type II error occurs when we fail to recognize an incorrect parameter. We can reduce the probability of this error by increasing the sample size and doing additional samples.
So when running a hypothesis test, the true result is not absolutely given. We only have probabilities to work with.
http://mathworld.wolfram.com/ConfidenceInterval.html
http://mathworld.wolfram.com/HypothesisTesting.html
Saturday, February 25, 2012
If my statistical results do not fall within a "normal" curve, does that mean they are wrong? Why?
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment