Tuesday, February 28, 2012

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 55

a.) Determine the equation of the tangent line to the curve $\displaystyle y= \tan \left( \frac{\pi x^2}{4} \right)$ at the point $(1, 1)$.

Solving for the slope


$
\begin{equation}
\begin{aligned}

y' = m =& \frac{d}{dx} \left[ \tan \left( \frac{\pi x^2}{4} \right) \right]
\\
\\
m =& \sec^2 \left( \frac{\pi x^2}{4} \right) \cdot \frac{d}{dx} \left( \frac{\pi x^2}{4} \right)
\\
\\
m =& \sec ^2 \left( \frac{\pi x^2}{4} \right) \cdot \left( \frac{\pi }{4} \right) \frac{d}{dx} (x^2)
\\
\\
m =& \sec ^ 2 \left( \frac{\pi x^2}{4} \right) \cdot \left( \frac{\pi}{4} \right) (2x)
\\
\\
m =& \sec ^2 \left( \frac{\pi x^2}{4} \right) \cdot \frac{\pi x}{2}
\\
\\
m =& x (5 + x^2) ^{\frac{-1}{2}}
\\
\\
m =& \frac{\displaystyle \pi x \sec ^2 \left( \frac{\pi x^2}{4} \right)}{2}
\\
\\
m =& \frac{\displaystyle \pi 1 \sec ^2 \left( \frac{\pi (1)^2}{4} \right)}{2}
\\
\\
m =& \pi


\end{aligned}
\end{equation}
$



Using the Point Slope Form



$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1)
\\
\\
y - 1 =& \pi (x - 1)
\\
\\
y - 1 + 1=& \pi (x - 1) + 1
\\
\\
y =& \pi (x - 1) + 1
\qquad \qquad \text{Equation of the tangent line at $(1,1)$}

\end{aligned}
\end{equation}
$


b.) Graph the curve and the tangent line on the same screen.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...