Monday, January 21, 2013

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 18

Show that $\displaystyle \frac{d}{dx} (\sec x) = \sec x \tan x$

Get the reciprocal of $\sec x$

$\displaystyle \sec x = \frac{1}{ \cos x}$

Use Quotient Rule


$
\begin{equation}
\begin{aligned}


\frac{d}{dx} (\sec x) =& \frac{\displaystyle \cos x \frac{d}{dx} (1) - \left[ 1 \frac{d}{dx} (\cos x) \right]}{(\cos x)^2}
&& \text{}
\\
\\
\frac{d}{dx} (\sec x) =& \frac{\cos x (0) - (- \sin x)}{\cos ^2 x}
&& \text{Simplify the equation}
\\
\\
\frac{d}{dx} (\sec x) =& \frac{\sin x}{\cos ^2 x}
&& \text{Factor out $\large \frac{1}{\cos x}$ and $\large \frac{\sin x}{\cos x}$}
\\
\\
\frac{d}{dx} (\sec x) =& \left( \frac{1}{\cos x} \right) \left( \frac{\sin x}{\cos x} \right)
&& \text{Get the identities}
\\
\\
\frac{d}{dx} (\sec x) =& \sec x \tan x
&& \text{}
\\
\\

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...