Thursday, January 24, 2013

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 52

Determine the equation of the tangent line to the curve $y= \sin x + \sin^2 x$ at the point $(0, 0)$.

Solving for the slope


$
\begin{equation}
\begin{aligned}

y' = m =& \frac{d}{dx} (\sin x + \sin^2 x)
\\
\\
m =& \frac{d}{dx} (\sin x) \frac{d}{dx} (\sin x)^2
\\
\\
m =& \cos x + 2 \sin x \cdot \frac{d}{dx} (\sin x)
\\
\\
m =& \cos x + 2 \sin x \cos x
\qquad \qquad \text{Apply Double Angle Formula $(\sin 2x = 2 \sin x \cos x)$}
\\
\\
m =& \cos x + \sin 2 x
\\
\\
m =& \cos (0) + \sin 2(0)
\\
\\
m =& 1 + 0
\\
\\
m =& 1


\end{aligned}
\end{equation}
$



Using the Point Slope Form



$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1)
\\
\\
y - 0 =& 1 (x - 0)
\\
\\
y =& x
\qquad \qquad \text{Equation of the tangent line at $(0,0)$}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...