Saturday, April 27, 2013

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 30

Find the determinant of the matrix $\displaystyle A = \left| \begin{array}{cccc}
2 & -1 & 6 & 4 \\
7 & 2 & -2 & 5 \\
4 & -2 & 10 & 8 \\
6 & 1 & 1 & 4
\end{array} \right|$, using row/column operations.

If we add 4 times column 2 to column 4, we get

$\displaystyle \left| \begin{array}{cccc}
2 & -1 & 6 & 0 \\
7 & 2 & -2 & 13 \\
4 & -2 & 10 & 0 \\
6 & 1 & 1 & 8
\end{array} \right|$

So,

$\displaystyle \det (A) = 13 \left| \begin{array}{ccc}
2 & -1 & 6 \\
4 & -2 & 10 \\
6 & 1 & 1
\end{array} \right| - 8 \left| \begin{array}{ccc}
2 & -1 & 6 \\
7 & 2 & -2 \\
4 & -2 & 10
\end{array} \right|$

Now, we add $\displaystyle \frac{-1}{2}$ times row 2 to row 1 in the first matrix and add 2 times column 2 to column 1. This gives us


$
\begin{equation}
\begin{aligned}

\det (A) =& 13 \left| \begin{array}{ccc}
0 & 0 & 1 \\
4 & -2 & 10 \\
6 & 1 & 1
\end{array} \right| - 8 \left| \begin{array}{ccc}
0 & -1 & 6 \\
11 & 2 & -2 \\
0 & -2 & 10
\end{array} \right|
\qquad \text{Expand}
\\
\\
=& 13 (1) \left| \begin{array}{cc}
4 & -2 \\
6 & 1
\end{array} \right|
-8 (11) \left| \begin{array}{cc}
-1 & 6 \\
-2 & 10
\end{array} \right|
\\
\\
=& 13(1) \left[ 4 \cdot 1 - (-2) \cdot 6 \right] - 8(11) \left[ (-1) \cdot 10 - 6 \cdot (-2) \right]
\\
\\
=& 208 - 176
\\
\\
=& 32


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...