Thursday, April 18, 2013

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 92

Prove that the length of the portion of any tangent line to the astroid $x^{\frac{2}{3}} + y^{\rangle2 3} = a^{\frac{2}{3}}$ cut-off by the coordinate axes is constant.

Solution:

Taking the derivative of the equation of astroid implicitly,


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (x^{\frac{2}{3}}) + \frac{d}{dy} (y^{\frac{2}{3}}) \frac{dy}{dx} =& \frac{d}{dx} (a^{\frac{2}{3}})
\\
\\
\frac{2}{3} x^{\frac{-1}{3}} + \frac{2}{3} y^{\frac{-1}{3}} \frac{dy}{dx} =& 0
\\
\\
\cancel{\frac{2}{3}} y^{\frac{-1}{3}} \frac{dy}{dx} =& -\cancel{\frac{2}{3}} x^{\frac{-1}{3}}
\\
\\
\frac{dy}{dx} =& - \left( \frac{y}{x} \right) ^{\frac{1}{3}}
\end{aligned}
\end{equation}
$


Equation of the tangent at point $(x_1, y_1)$ in astroid is


$
\begin{equation}
\begin{aligned}

y - y_1 =& - \left( \frac{y_1}{x_1} \right) ^{\frac{1}{3}} (x - x_1)
\\
\\
y - y_1 =& x_1 (y_1)^{\frac{1}{3}} + y_1^{\frac{1}{3}}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...