Tuesday, May 28, 2013

College Algebra, Chapter 1, 1.7, Section 1.7, Problem 40

Solve the inequality $3-|2x+4| \leq 1$. Express the answer using interval notation.

$
\begin{equation}
\begin{aligned}
3-|2x+4| &\leq 1\\
\\
-|2x+4| &\leq -2 && \text{Subtract 3}
\end{aligned}
\end{equation}
$



We have,


$
\begin{equation}
\begin{aligned}
-(2x+4) &\leq -2 && \text{and}& -(-(2x+4)) &\leq -2 && \text{Divide each side by -1}\\
\\
2x +4 &\geq 2 && \text{and}& -(2x+4) &\geq 2 && \text{Divide by -1}\\
\\
2x + 4 &\geq 2 && \text{and}& 2x+4 &\leq -2 && \text{Subtract 4}\\
\\
2x &\geq -2 && \text{and}& 2x &\leq -6 && \text{Divide by 2}\\
\\
x &\geq -1 && \text{and}& x &\leq -3
\end{aligned}
\end{equation}
$


The solution set is $(-\infty,-3] \bigcup [-1,\infty)$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...