Tuesday, May 21, 2013

College Algebra, Chapter 3, 3.4, Section 3.4, Problem 16

A function $\displaystyle f(x) = 4 - x^2$. Determine the average rate of change of the function between $x = 1$ and $x = 1 + h$.


$
\begin{equation}
\begin{aligned}

\text{average rate of change } =& \frac{f(b) - f(a)}{b - a}
&& \text{Model}
\\
\\
\text{average rate of change } =& \frac{f(1 + h) - f(1)}{1 + h - 1}
&& \text{Substitute } a = 1 \text{ and } b = 1 + h
\\
\\
\text{average rate of change } =& \frac{4 - (1 + h)^2 - [4 - (1)^2] }{h}
&& \text{Simplify}
\\
\\
\text{average rate of change } =& \frac{4 - (1 + 2h + h^2) - (3)}{h}
&& \text{Apply Distributive Property}
\\
\\
\text{average rate of change } =& \frac{4 - 1 - 2h - h^2 - 3}{h}
&& \text{Combine like terms}
\\
\\
\text{average rate of change } =& \frac{-2h - h^2}{h}
&& \text{Factor $h$ from each term}
\\
\\
\text{average rate of change } =& \frac{\cancel{h} (-2 - h)}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
\text{average rate of change } =& -2 - h
&& \text{Answer}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...