Tuesday, September 3, 2013

College Algebra, Chapter 2, 2.2, Section 2.2, Problem 10

Determine whether the points $(0,1), \left( \frac{1}{\sqrt{2}} ,\frac{1}{\sqrt{2}}\right)$ and $\left(\frac{\sqrt{3}}{2},\frac{1}{2} \right)$ are on the graph $x^2 +y^2 = 1$
@ point $(0,1)$

$
\begin{equation}
\begin{aligned}
0^2 + 1^2 &= 1\\
\\
1 &= 1
\end{aligned}
\end{equation}
$


@ point $\left( \frac{1}{\sqrt{2}} ,\frac{1}{\sqrt{2}}\right)$

$
\begin{equation}
\begin{aligned}
\left( \frac{1}{\sqrt{2}} \right)^2 + \left( \frac{1}{\sqrt{2}} \right)^2 &= 1 \\
\\
\left( \frac{1}{2} \right) + \left( \frac{1}{2} \right) &= 1\\
\\
\frac{2}{2} &= 1\\
\\
1 &= 1\\

\end{aligned}
\end{equation}
$


@ point $\left(\frac{\sqrt{3}}{2},\frac{1}{2} \right)$

$
\begin{equation}
\begin{aligned}
\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 &= 1\\
\\
\frac{3}{4} + \frac{1}{4} &= 1 \\
\\
\frac{4}{4} &=1 \\
\\
1 &= 1
\end{aligned}
\end{equation}
$

It shows that all the given points satisfy the equation $x^2 + y^2 =1$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...