Monday, November 4, 2013

sqrt(1-4x^2)y' = x Find the general solution of the differential equation

To be able to evaluate the problem: sqrt(1-4x^2)y'=x , we express in a form of y'=f(x) .
 To do this, we divide both sides by sqrt(1-4x^2) .
y'=x/sqrt(1-4x^2)
The general solution of a differential equation in a form of y'=f(x) can
 be evaluated using direct integration. We can denote y' as (dy)/(dx) .
Then, 
y'=x/sqrt(1-4x^2)  becomes (dy)/(dx)=x/sqrt(1-4x^2)
This is the same as  (dy)=x/sqrt(1-4x^2) dx
Apply direct integration on both sides:
For the left side, we have: int (dy)=y
 For the right side, we apply u-substitution using u =1-4x^2 then du=-8x dx or  (du)/(-8)=xdx .
int x/sqrt(1-4x^2) dx = int1/sqrt(u) *(du)/(-8)
Applying basic integration property: int c f(x) dx = c int f(x) dx .
int1/sqrt(u) *(du)/(-8) = -1/8int1/sqrt(u)du
Applying Law of Exponents: sqrt(x)= x^1/2 and  1/x^n = x^-n :
-1/8int1/sqrt(u)du=-1/8int1/u^(1/2)du
                      =-1/8int u^(-1/2)du
Applying the Power Rule for integration: int x^n= x^(n+1)/(n+1)+C .
-1/8int u^(-1/2)du =-1/8 u^(-1/2+1)/(-1/2+1)+C
                      =-1/8 u^(1/2)/(1/2)+C
                      =-1/8 u^(1/2)*(2/1)+C
                      = -2/8 u^(1/2)+C
                      = -1/4u^(1/2)+C or -1/4sqrt(u)+C
Plug-in u = 1-4x^2 in -1/4u^(1/2) , we get:
int1/sqrt(u) *(du)/(-8)=-1/4sqrt(1-4x^2)+C
 
Combining the results, we get the general solution for differential equation
( sqrt(1-4x^2)y'=x)
 as:
y= -1/4sqrt(1-4x^2)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...