y' - y = 16
To solve, rewrite the derivative as dy/dx .
(dy)/dx - y = 16
Then, express the equation in the form N(y)dy = M(x) dx .
(dy)/dx = y+16
(dy)/(y+16) = dx
Take the integral of both sides.
int (dy)/(y+16) = int dx
For the left side of the equation, apply the formula int (du)/u = ln|u|+C .
And for the right side, apply the formula int adx =ax + C.
ln |y+ 16| + C_1 = x + C_2
Then, isolate the y. To do so, move the C1 to the right side.
ln|y+16| = x + C_2-C_1
Since C1 and C2 represent any number, express it as a single constant C.
ln|y+16| = x + C
Then, convert this to exponential equation.
y+16=e^(x+C)
And, move the 16 to the right side.
y = e^(x+C) - 16
Therefore, the general solution is y = e^(x+C)-16 .
Monday, June 9, 2014
Calculus of a Single Variable, Chapter 6, 6.4, Section 6.4, Problem 7
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment