Basis (n=1)
We will use integration by parts
int u dv=uv-int v du
int_0^infty xe^-x dx=|[u=x,dv=e^-x dx],[du=dx,v=-e^-x]|=
-xe^-x|_0^infty+int_0^infty e^-x dx=(-xe^-x-e^-x)|_0^infty=
lim_(x to infty)(-xe^-x-e^-x)-(0-1)=
In order to calculate the above integral we shall use L'Hospital's rule:
lim_(x to a)(f(x))/(f(x))=lim_(x to a) (f'(x))/(g'(x))
First we rewrite the limit so we could use L'hospital's rule.
lim_(x to infty)-xe^-x=lim_(x to infty)-x/e^x=
Now we differentiate.
lim_(x to infty)-1/e^x=0
Let us now return to calculating the integral.
0-0-0+1=1
As we can see the integral converges to 1.
Let us assume that integral int_0^infty x^n e^-x dx converges for all n leq k.
Step (n=k+1)
We will once again use integration by parts.
int_0^infty x^(k+1)e^-x dx=|[u=x^(k+1),dv=e^-x dx],[du=(k+1)x^k dx,v=-e^-x]|=
-x^(k+1)e^-x|_0^infty+(k+1)int_0^infty x^k e^-x dx
From the assumption we know that the above integral converges, therefore we only need to show that x^(k+1)e^-x|_0^infty also converges.
x^(k+1)e^-x|_0^infty=lim_(x to infty)x^(k+1)e^-x-0=lim_(x to infty) x^(k+1)/e^x
If we now apply L'Hospital's rule k+1 times, we will get
lim_(x to infty) ((k+1)!)/e^x=0
Thus, we have shown that the integral converges for n=k+1 concluding the induction.
QED
The image below shows graphs of the function under integral for different values of n. We can see that x-axis is asymptote for all of the graphs meaning that the function converges to zero for all n. The only difference is that the convergence gets a little bit slower as n increases and so the area under the graph increases as well. However, the area remains finite for all n in NN, as we have already concluded.
Tuesday, June 24, 2014
Calculus of a Single Variable, Chapter 8, 8.8, Section 8.8, Problem 51
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment