Friday, July 18, 2014

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 29

If $\displaystyle f(x) = \frac{1}{\sqrt{x + 2}}$, find $f'(a)$.

Using the definition of the derivative


$
\begin{equation}
\begin{aligned}

f'(a) &= \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
&& \\
\\
f'(a) &= \lim_{h \to 0} \frac{\displaystyle \frac{1}{\sqrt{a + h + 2}} - \frac{1}{\sqrt{a + 2}}}{h}
&& \text{Substitute $f(a + h)$ and $f(a)$}\\
\\
f'(a) &= \lim_{h \to 0} \frac{\sqrt{a + 2} - \sqrt{a + h + 2}}{(h)(\sqrt{a + h + 2})(\sqrt{a + 2})}
&& \text{Get the LCD of the numerator}\\
\\
f'(a) &= \lim_{h \to 0} \frac{\sqrt{a + 2} - \sqrt{a + h + 2}}{(h)(\sqrt{a + h + 2})(\sqrt{a + 2})}
\cdot \frac{\sqrt{a + 2} + \sqrt{a + h + 2}}{\sqrt{a + 2} + \sqrt{a + h + 2}}
&& \text{Multiply both numerator and denominator by $(\sqrt{a + 2} + \sqrt{a + h + 2})$}\\
\\
f'(a) &= \lim_{h \to 0} \frac{a + 2 - ( a + h + 2)}{(h)(\sqrt{a + h + 2})(\sqrt{a + 2})(\sqrt{a + 2} + \sqrt{a + h + 2})}
&& \text{Simplify the equation}\\
\\
f'(a) &= \lim_{h \to 0} \frac{\cancel{a} + \cancel{2} - \cancel{a} - h - \cancel{2}}{(h)(\sqrt{a + h + 2})(\sqrt{a + 2})(\sqrt{a + 2} + \sqrt{a + h + 2})}
&& \text{Combine like terms}\\
\\
f'(a) &= \lim_{h \to 0} \frac{\cancel{-h}}{\cancel{(h)} (\sqrt{a + h + 2}) (\sqrt{a + 2})(\sqrt{a + 2} + \sqrt{a + h + 2})}
&& \text{Cancel out like terms}\\
\\
f'(a) &= \lim_{h \to 0} \left[ \frac{-1}{(\sqrt{a + h + 2})(\sqrt{a + 2})(\sqrt{a + 2} + \sqrt{a + h + 2})}\right] = \frac{-1}{(\sqrt{a + 0 + 2})(\sqrt{a + 2})(\sqrt{a + 2} + \sqrt{a + 0 + 2})}
&& \text{Evaluate the limit}\\
\\
f'(a) &= \frac{-1}{(\sqrt{a + 2})(\sqrt{a + 2})(\sqrt{a + 2} + \sqrt{a + 2})} = \frac{-1}{(a + 2)(2 \sqrt{a + 2})} = \frac{-1}{(a + 2)(2)(a + 2)^{\frac{1}{2}}}
&& \text{Simplify the equation}

\end{aligned}
\end{equation}
$


$\qquad\fbox{$f'(a) = \displaystyle \frac{-1}{2(a + 2)^{\frac{3}{2}}}$} $

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...