Sunday, July 20, 2014

sum_(n=1)^oo 5^n/n^4 Use the Root Test to determine the convergence or divergence of the series.

To determine the convergence or divergence of a series sum a_n using Root test, we evaluate a limit as:
lim_(n-gtoo) root(n)(|a_n|)= L
or
lim_(n-gtoo) |a_n|^(1/n)= L
Then, we follow the conditions:
a) Llt1 then the series is absolutely convergent.
b) Lgt1 then the series is divergent.
c) L=1 or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
We may apply Root test on the given series sum_(n=1)^oo 5^n/n^4 when we let:  a_n =5^n/n^4 .
Applying the Root test, we set-up the limit as: 
lim_(n-gtoo) |5^n/n^4|^(1/n) =lim_(n-gtoo) (5^n/n^4)^(1/n)
Apply Law of Exponent: (x/y)^n = x^n/y^n and (x^n)^m= x^(n*m) .
lim_(n-gtoo) (5^n/n^4)^(1/n) =lim_(n-gtoo) (5^n)^(1/n)/(n^4)^(1/n)
                        =lim_(n-gtoo)5^(n*1/n)/n^(4*1/n)
                        =lim_(n-gtoo)5^(n/n)/n^(4/n)
                        =lim_(n-gtoo)5^1/n^(4/n)
                        =lim_(n-gtoo)5/n^(4/n)
Evaluate the limit.
lim_(n-gtoo) 5/n^(4/n)=5 lim_(n-gtoo) 1/n^(4/n)         
                =5 *1/oo^(4/oo)
                =5 *1/oo^(0)
                =5 *1/1
                 = 5*1
                =5
The limit value L =5 satisfies the condition: Lgt1 since 5gt1 .
Conclusion: The series sum_(n=1)^oo 5^n/n^4 is divergent.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...