Given f(x)=x^4-2x^3+x^2 on the interval [0,6]:
(1) This is a quartic polynomial with positive leading coefficient so its end behavior is the same as a parabola opening up.
(2) f(0)=0 and f(6)=900. Since the function is everywhere continuous and infinitely differentiable everywhere, the Mean Value theorem guarantees the existence of a c in the interval such that the slope of the tangent line at c is the same as the slope of the secant line through the endpoints of the interval.
The slope of the secant line: m=(900-0)/(6-0)=150
The equation of the secant line is y=150x
(3) The derivative of f is 4x^3-6x^2+2x . We set this equal to 150:
x~~3.8721 so y~~123.678 and the equation of the tangent line is:
y-123.678=150(x-3.8721)
The graph of the function, the secant line, and the tangent line:
Monday, January 19, 2015
Calculus of a Single Variable, Chapter 3, 3.2, Section 3.2, Problem 50
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment