For the given integral: int 2x/(x^2+6x+13) dx , we may apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int 2x/(x^2+6x+13) dx =2 int x/(x^2+6x+13) dx
To be able to evaluate this, we apply completing the square on x^2+6x+13 .
The x^2+6x+13 resembles ax^2+bx+c where:
a= 1 and b =6 that we can plug-into (-b/(2a))^2 .
(-b/(2a))^2= (-(6)/(2*1))^2
= (-6/2)^2
= (-3)^2
=9
To complete the square, we add and subtract 9:
x^2+6x+13 +9 -9
Group them as: (x^2+6x+9)-9+13
Simplify: (x^2+6x+9)+4
Apply factoring for the perfect square trinomial: x^2+6x+9 = (x+3)^2
(x^2+6x+9)+4=(x+3)^2 + 4
Which means x^2+6x+13 =(x+3)^2 + 4 then the integral becomes:
2 int x/sqrt(x^2+6x+13) dx =2 int x/((x+3)^2 + 4) dx
For the integral part, we apply u-substitution by letting:
u = x+3 then x= u-3 and du =dx
Then,
2 int x/((x+3)^2 + 4) dx= 2 int (u-3)/(u^2 + 4) du
Apply the basic integration property: : int (u+v) dx = int (u) dx + int (v) dx .
2 int (u-3)/(u^2 + 4) du=2 [int u/(u^2 + 4) du - int 3/(u^2 + 4) du]
For the integration of int u/(u^2 + 4) du , let:
v=u^2+4 then dv =2u du or (dv)/2 = u du .
Then,
int u/(u^2 + 4) du = int ((dv)/2)/(v)
= 1/2 int (dv)/(v)
= 1/2ln|v|+C
Plug-in v= u^2+4, we get: int u/(u^2 + 4) du =1/2ln|u^2+4|+C
For the second integration: - int 3/(u^2 + 4) du , we follow the basic integration formula for inverse tangent function:
int (du)/(u^2+a^2) = 1/a arctan(u/a)+C
Then,
- int 3/(u^2 + 4) du =-3 int (du)/(u^2 + 2^2)
= -3 *1/2arctan(u/2)+C
=-3/2 arctan(u/2)+C
Combine the results, we get:
2 [int (u/(u^2 + 4) du - int 3/(u^2 + 4) du]
=2*[ 1/2ln|u^2+4|-3/2arctan(u/2)]+C
= ln|u^2+4| - 3arctan(u/2)+C
Plug-in u=x+3 to solve for the final answer:
int 2x/(x^2+6x+13) dx= ln|(x+3)^2+4| - 3arctan((x+3)/2)+C
Wednesday, January 14, 2015
Calculus of a Single Variable, Chapter 5, 5.7, Section 5.7, Problem 35
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment