Wednesday, April 29, 2015

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 26

Solve $\displaystyle 3x^2 - 6x - 1 = 0$ by completing the square.


$
\begin{equation}
\begin{aligned}

3x^2 - 6x - 1 =& 0
&& \text{Given}
\\
\\
3x^2 - 6x =& 1
&& \text{Add 1}
\\
\\
x^2 - 2x =& \frac{1}{3}
&& \text{Divide both sides by 3 to eliminate the coefficient of } x^2
\\
\\
x^2 - 2x + 1 =& \frac{1}{3} + 1
&& \text{Complete the square: add } \left( \frac{-2}{2} \right)^2 = 1
\\
\\
(x - 1)^2 =& \frac{4}{3}
&& \text{Perfect square}
\\
\\
x - 1 =& \pm \sqrt{\frac{4}{3}}
&& \text{Take square root}
\\
\\
x =& 1 \pm \sqrt{\frac{4}{3}}
&& \text{Add 1}
\\
\\
x =& 1 + \frac{2}{\sqrt{3}} \text{ and } x = 1 - \frac{2}{\sqrt{3}}
&& \text{Solve for } x
\\
\\
x =& \frac{3 + 2 \sqrt{3}}{3} \text{ and } x = \frac{3 - 2 \sqrt{3}}{3}
&& \text{Rationalize}



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...