Tuesday, April 21, 2015

int xarcsec(x^2+1) dx Use integration tables to find the indefinite integral.

Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
For the given problem int xarcsec(x^2+1) dx, it has a integrand in a form of  inverse secant function. The integral resembles one of the formulas from the integration as :  int arcsec (u/a)du = u*arcsin(u/a) +-aln(u+sqrt(u^2-a^2))+C .
where we use: (+)  if 0ltarcsec (u/a)ltpi/2
                    (-) if pi/2ltarcsec(u/a)ltpi
Selecting the sign between (+) and (-) will be crucial when solving for definite integral with given boundary values [a,b] .
 For easier comparison, we may apply u-substitution by letting:
u =x^2+1 then du = 2x dx or (du)/2
Plug-in the values int xarcsec(x^2+1) dx , we get:
int xarcsec(x^2+1) dx=int arcsec(x^2+1) * xdx
                                        = int arcsec(u) * (du)/2
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int arcsec(u) * (du)/2= 1/2int arcsec(u) du
                         or 1/2 int arcsec(u/1) du
Applying the aforementioned formula from the integration table, we get:
1/2 int arcsec(u/1) du=1/2 *[u*arcsin(u/1) +-1ln(u+sqrt(u^2-1^2))]+C
                                =1/2 *[u*arcsin(u) +-ln(u+sqrt(u^2-1))]+C
                                =(u*arcsin(u))/2 +-(ln(u+sqrt(u^2-1)))/2+C
Plug-in u =x^2+1 on (u*arcsin(u))/2 +-(ln(u+sqrt(u^2-1)))/2+C , we get the indefinite integral as:
int xarcsec(x^2+1) dx=((x^2+1)*arcsin(x^2+1))/2 +-(ln(x^2+1+sqrt((x^2+1)^2-1)))/2+C
=(x^2arcsin(x^2+1))/2+arcsin(x^2+1)/2 +-ln(x^2+1+sqrt(x^4+2x^2))/2+C
=(x^2arcsin(x^2+1))/2+arcsin(x^2+1)/2 +-ln(x^2+1+sqrt(x^2(x^2+2)))/2+C
=(x^2arcsin(x^2+1))/2+arcsin(x^2+1)/2 +-ln(x^2+1+|x|sqrt(x^2+2))/2+C
 
 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...