Tuesday, October 6, 2015

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 12

int(du)/(usqrt(5-u^2))

Let
u=sqrt5sin(theta)
(du)/[d(theta)]=sqrt5cos(theta)
(du)=sqrt5cos(theta)d(theta)

int(du)/[usqrt(5-u^2)]
=int1/(sqrt5sin(theta))*[sqrt(5)cos(theta)d(theta)]/sqrt[5-(sqrt5sin(theta)^2)]
=int[cot(theta)d(theta)]/sqrt(5-5sin^2theta)
=int[cot(theta)d(theta)]/sqrt[5(1-sin^2theta)]
=int[cot(theta)d(theta)]/sqrt(5cos^2theta)
=int[cot(theta)d(theta)]/[sqrt(5)cos(theta)]
=int[cos(theta)d(theta)]/[sqrt(5)sin(theta)cos(theta)]
=int[d(theta)]/[sqrt(5)sin(theta)]
=int[csc(theta)d(theta)]/sqrt(5)
=1/sqrt(5)intcsc(theta)d(theta)
=1/sqrt(5)ln|sqrt(5)/u-sqrt(5-u^2)/u|+C
=1/sqrt(5)*ln|[sqrt5-sqrt(5-u^2)]/u|+C

The final answer is
=1/sqrt(5)*ln|[sqrt5-sqrt(5-u^2)]/u|+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...