Tuesday, October 13, 2015

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 2

Explain how you would use each method to solve the equation $x^2 - 4x - 5 = 0$

a.) By factoring


$
\begin{equation}
\begin{aligned}

x^2 - 4x - 5 =& 0
&& \text{Given}
\\
\\
(x - 5)(x + 1) =& 0
&& \text{Factor}
\\
\\
x - 5 =& 0 \text{ or } x + 1 = 0
&& \text{Zero Product Property}
\\
\\
x =& 5 \text{ or } x = -1
&& \text{Solve}

\end{aligned}
\end{equation}
$


b.) By completing the square


$
\begin{equation}
\begin{aligned}

x^2 - 4x - 5 =& 0
&& \text{Given}
\\
\\
x^2 - 4x =& 5
&& \text{Add 5}
\\
\\
x^2 - 4x + 4 =& 5 + 4
&& \text{Complete the square: add } \left( \frac{-4}{2} \right)^2 = 4
\\
\\
(x - 2)^2 =& 9
&& \text{Perfect Square}
\\
\\
x - 2 =& \pm \sqrt{9}
&& \text{Take square root}
\\
\\
x =& 2 \pm 3
&& \text{Add two}
\\
\\
x =& 5 \text{ and } x = -1
&& \text{Solve}

\end{aligned}
\end{equation}
$


c.) By using the Quadratic Formula


$
\begin{equation}
\begin{aligned}

x^2 - 4x - 5 =& 0
&& \text{Given}
\\
\\
x =& \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-5)}}{2(1)}
&& \text{Apply the formula } x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\\
\\
x =& \frac{4 \pm \sqrt{16 + 20}}{2}
&& \text{Simplify}
\\
\\
x =& \frac{4 \pm 6}{2}
&&
\\
\\
x =& 2 \pm 3
&& \text{Solve for } x
\\
\\
x =& 5 \text{ and } x = -1
&&


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...