Saturday, October 24, 2015

Calculus of a Single Variable, Chapter 5, 5.7, Section 5.7, Problem 40

We have to evaluate the integral: \int \frac{1}{(x-1)\sqrt{x^2-2x}}dx
We can write the integral as:
\int \frac{1}{(x-1)\sqrt{x^2-2x}}dx=\int \frac{1}{(x-1)\sqrt{(x-1)^2-1}}dx
Let x-1=t
So , dx=dt
hence we can write,
\int \frac{1}{(x-1)\sqrt{(x-1)^2-1}}dx=\int \frac{1}{t\sqrt{t^2-1}}dt
Let u=t^2
So, du=2tdt
implies, dt=\frac{1}{2t}du
Therefore we have,
\int\frac{1}{t\sqrt{t^2-1}}dt=\int \frac{1}{t\sqrt{u-1}}.\frac{du}{2t}
=\int \frac{1}{2u\sqrt{u-1}}du
Now let v=\sqrt{u-1}
So, dv=\frac{1}{2\sqrt{u-1}}du=\frac{1}{2v}du
Hence we have,
\int \frac{1}{2u\sqrt{u-1}}du=\int \frac{2vdv}{2(v^2+1)v}
=\int \frac{dv}{v^2+1}
=tan^{-1}(v)+C where C is a constant.
=tan^{-1}(\sqrt{u-1})+C
=tan^{-1}(\sqrt{t^2-1})+C
=tan^{-1}(\sqrt{(x-1)^2-1})+C
=tan^{-1}(\sqrt{x^2-2x})+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...