Thursday, June 16, 2016

College Algebra, Chapter 7, 7.3, Section 7.3, Problem 18

Determine the inverse of the matrix $\left[ \begin{array}{ccc}
5 & 7 & 4 \\
3 & -1 & 3 \\
6 & 7 & 5
\end{array} \right]$ if it exists.

First, let's add the identity matrix to the right of our matrix

$\left[ \begin{array}{ccc|ccc}
5 & 7 & 4 & 1 & 0 & 0 \\
3 & -1 & 3 & 0 & 1 & 0 \\
6 & 7 & 5 & 0 & 0 & 1
\end{array} \right]$

By using Gauss-Jordan Elimination

$\displaystyle \frac{1}{5} R_1$

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{7}{5} & \displaystyle \frac{4}{5} & \displaystyle \frac{1}{5} & 0 & 0 \\
3 & -1 & 3 & 0 & 1 & 0 \\
6 & 7 & 5 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_2 - 3 R_1 \to R_2$

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{7}{5} & \displaystyle \frac{4}{5} & \displaystyle \frac{1}{5} & 0 & 0 \\
0 & \displaystyle \frac{-26}{5} & \displaystyle \frac{3}{5} & \displaystyle \frac{-3}{5} & 1 & 0 \\
0 & \displaystyle \frac{-7}{5} & \displaystyle \frac{1}{5} & \displaystyle \frac{-6}{5} & 0 & 1
\end{array} \right]$

$\displaystyle \frac{-5}{26} R_2$

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{7}{5} & \displaystyle \frac{4}{5} & \displaystyle \frac{1}{5} & 0 & 0 \\
0 & 1 & \displaystyle \frac{-3}{26} & \displaystyle \frac{3}{26} & \displaystyle \frac{-5}{26} & 0 \\
0 & \displaystyle \frac{-7}{5} & \displaystyle \frac{1}{5} & \displaystyle \frac{-6}{5} & 0 & 1
\end{array} \right]$

$\displaystyle R_3 + \frac{7}{5} R_2 \to R_3$

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{7}{5} & \displaystyle \frac{4}{5} & \displaystyle \frac{1}{5} & 0 & 0 \\
0 & 1 & \displaystyle \frac{-3}{26} & \displaystyle \frac{3}{26} & \displaystyle \frac{-5}{26} & 0 \\
0 & 0 & \displaystyle \frac{1}{26} & \displaystyle \frac{-27}{26} & \displaystyle \frac{-7}{26} & 1
\end{array} \right]$


$\displaystyle 26 R_3$

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{7}{5} & \displaystyle \frac{4}{5} & \displaystyle \frac{1}{5} & 0 & 0 \\
0 & 1 & \displaystyle \frac{-3}{26} & \displaystyle \frac{3}{26} & \displaystyle \frac{-5}{26} & 0 \\
0 & 0 & 1 & -27 & -7 & 26
\end{array} \right]$


$\displaystyle R_2 + \frac{3}{26} R_3 \to R_2$

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{7}{5} & \displaystyle \frac{4}{5} & \displaystyle \frac{1}{5} & 0 & 0 \\
0 & 1 & 0 & -3 & -1 & 3 \\
0 & 0 & 1 & -27 & -7 & 26
\end{array} \right]$


$\displaystyle R_1 - \frac{4}{5} R_3 \to R_1$

$\left[ \begin{array}{ccc|ccc}
1 & \displaystyle \frac{7}{5} & 0 & \displaystyle \frac{109}{5} & \displaystyle \frac{28}{5} & \displaystyle \frac{-104}{5} \\
0 & 1 & 0 & -3 & -1 & 3 \\
0 & 0 & 1 & -27 & -7 & 26
\end{array} \right]$


$\displaystyle R_1 - \frac{7}{5} R_2 \to R_1$

$\left[ \begin{array}{ccc|ccc}
1 & 0 & 0 & 26 & 7 & -25 \\
0 & 1 & 0 & -3 & -1 & 3 \\
0 & 0 & 1 & -27 & -7 & 26
\end{array} \right]$


The inverse matrix can now be found in the right half of our reduced row-echelon matrix. So the inverse matrix is

$\left[ \begin{array}{ccc}
26 & 7 & -25 \\
-3 & -1 & 3 \\
-27 & -7 & 26
\end{array} \right]$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...