Express the system of linear equations $
\left\{
\begin{array}{ccccc}
2x & & +3z & = & 5 \\
x & +y & +6z & = & 0 \\
3x & -y & +z & = & 5
\end{array}
\right.$ as a matrix equation then solve the matrix equation by multiplying each side by the inverse of the coefficient matrix.
The equivalent matrix equation of the system is
$\left[
\begin{array}{ccc}
2 & 0 & 3 \\
1 & 1 & 6 \\
3 & -1 & 1
\end{array}
\right] \left[ \begin{array}{c}
x \\
y \\
z
\end{array} \right] = \left[ \begin{array}{c}
5 \\
0 \\
5
\end{array} \right]$
If we let
$\displaystyle A = \left[ \begin{array}{cc}
6 & -5 \\
8 & -7
\end{array} \right] \qquad X = \left[ \begin{array}{c}
x \\
y
\end{array} \right] \qquad B = \left[ \begin{array}{c}
1 \\
-1
\end{array} \right]$
Then the matrix can be written as
$AX = B$
We solve this matrix equation by multiplying each side by the inverse of $A$
$
\begin{equation}
\begin{aligned}
AX =& B
&&
\\
A^{-1} (AX) =& A^{-1} B
&& \text{Multiply each side by } A^{-1}
\\
(A^{-1} A) X =& A^{-1} B
&& \text{Associate Property}
\\
I_3 X =& A^{-1} B
&& \text{Property of Inverses}
\\
X =& A^{-1} B
&& \text{Property of Identity Matrix}
\end{aligned}
\end{equation}
$
Solving for the inverse of $A$
Add identity matrix to the right of the matrix
$\displaystyle \left[ \begin{array}{ccc|ccc}
2 & 0 & 3 & 1 & 0 & 0 \\
1 & 1 & 6 & 0 & 1 & 0 \\
3 & -1 & 1 & 0 & 0 & 1
\end{array} \right]$
Using Gauss-Jordan Elimination
$\displaystyle \frac{1}{2} R_1$
$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
1 & 1 & 6 & 0 & 1 & 0 \\
3 & -1 & 1 & 0 & 0 & 1
\end{array} \right]$
$\displaystyle R_2 - R_1 \to R_2$
$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
0 & 1 & \displaystyle \frac{9}{2} & \displaystyle \frac{-1}{2} & 1 & 0 \\
3 & -1 & 1 & 0 & 0 & 1
\end{array} \right]$
$\displaystyle R_3 - 3 R_1 \to R_3$
$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
0 & 1 & \displaystyle \frac{9}{2} & \displaystyle \frac{-1}{2} & 1 & 0 \\
0 & -1 & \displaystyle \frac{-7}{2} & \displaystyle \frac{-3}{2} & 0 & 1
\end{array} \right]$
$\displaystyle R_3 + R_2 \to R_3$
$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
0 & 1 & \displaystyle \frac{9}{2} & \displaystyle \frac{-1}{2} & 1 & 0 \\
0 & 0 & 1 & -2 & 1 & 1
\end{array} \right]$
$\displaystyle R_2 - \frac{9}{2} R_3 \to R_2$
$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & \displaystyle \frac{17}{2} & \displaystyle \frac{-7}{2} & \displaystyle \frac{-9}{2} \\
0 & 0 & 1 & -2 & 1 & 1
\end{array} \right]$
$\displaystyle R_1 - \frac{3}{2} R_3 \to R_1$
$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & 0 & \displaystyle \frac{7}{2} & \displaystyle \frac{-3}{2} & \displaystyle \frac{-3}{2} \\
0 & 1 & 0 & \displaystyle \frac{17}{2} & \displaystyle \frac{-7}{2} & \displaystyle \frac{-9}{2} \\
0 & 0 & 1 & -2 & 1 & 1
\end{array} \right]$
So the inverse is
$\displaystyle A^{-1} = \left[ \begin{array}{ccc}
\displaystyle \frac{7}{2} & \displaystyle \frac{-3}{2} & \displaystyle \frac{-3}{2} \\
\displaystyle \frac{17}{2} & \displaystyle \frac{-7}{2} & \displaystyle \frac{-9}{2} \\
-2 & 1 & 1
\end{array} \right]$
Then,
$
\begin{equation}
\begin{aligned}
X =& A^{-1} B
\\
\\
X =& \left[ \begin{array}{ccc}
\displaystyle \frac{7}{2} & \displaystyle \frac{-3}{2} & \displaystyle \frac{-3}{2} \\
\displaystyle \frac{17}{2} & \displaystyle \frac{-7}{2} & \displaystyle \frac{-9}{2} \\
-2 & 1 & 1
\end{array} \right] \left[ \begin{array}{c}
5 \\
0 \\
5
\end{array} \right]
\\
\\
X =& \left[ \begin{array}{c}
\displaystyle \frac{7}{2} \cdot 5 + \left( \frac{-3}{2} \right) \cdot 0 + \left( \frac{-3}{2} \right) \cdot 5 \\
\displaystyle \frac{17}{2} \cdot 5 + \left( \frac{-7}{2} \right) \cdot 0 + \left( \frac{-9}{2} \right) \cdot 5 \\
-2 \cdot 5 + 1 \cdot 0 + 1 \cdot 5
\end{array} \right]
\\
\\
X =& \left[ \begin{array}{c}
10 \\
20 \\
-5
\end{array} \right]
\end{aligned}
\end{equation}
$
Friday, July 22, 2016
College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 54
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment