Friday, July 22, 2016

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 54

Express the system of linear equations $
\left\{
\begin{array}{ccccc}
2x & & +3z & = & 5 \\
x & +y & +6z & = & 0 \\
3x & -y & +z & = & 5
\end{array}
\right.$ as a matrix equation then solve the matrix equation by multiplying each side by the inverse of the coefficient matrix.

The equivalent matrix equation of the system is

$\left[
\begin{array}{ccc}
2 & 0 & 3 \\
1 & 1 & 6 \\
3 & -1 & 1
\end{array}
\right] \left[ \begin{array}{c}
x \\
y \\
z
\end{array} \right] = \left[ \begin{array}{c}
5 \\
0 \\
5
\end{array} \right]$

If we let

$\displaystyle A = \left[ \begin{array}{cc}
6 & -5 \\
8 & -7
\end{array} \right] \qquad X = \left[ \begin{array}{c}
x \\
y
\end{array} \right] \qquad B = \left[ \begin{array}{c}
1 \\
-1
\end{array} \right]$

Then the matrix can be written as

$AX = B$

We solve this matrix equation by multiplying each side by the inverse of $A$


$
\begin{equation}
\begin{aligned}

AX =& B
&&
\\
A^{-1} (AX) =& A^{-1} B
&& \text{Multiply each side by } A^{-1}
\\
(A^{-1} A) X =& A^{-1} B
&& \text{Associate Property}
\\
I_3 X =& A^{-1} B
&& \text{Property of Inverses}
\\
X =& A^{-1} B
&& \text{Property of Identity Matrix}

\end{aligned}
\end{equation}
$


Solving for the inverse of $A$

Add identity matrix to the right of the matrix

$\displaystyle \left[ \begin{array}{ccc|ccc}
2 & 0 & 3 & 1 & 0 & 0 \\
1 & 1 & 6 & 0 & 1 & 0 \\
3 & -1 & 1 & 0 & 0 & 1
\end{array} \right]$

Using Gauss-Jordan Elimination

$\displaystyle \frac{1}{2} R_1$

$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
1 & 1 & 6 & 0 & 1 & 0 \\
3 & -1 & 1 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_2 - R_1 \to R_2$

$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
0 & 1 & \displaystyle \frac{9}{2} & \displaystyle \frac{-1}{2} & 1 & 0 \\
3 & -1 & 1 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_3 - 3 R_1 \to R_3$

$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
0 & 1 & \displaystyle \frac{9}{2} & \displaystyle \frac{-1}{2} & 1 & 0 \\
0 & -1 & \displaystyle \frac{-7}{2} & \displaystyle \frac{-3}{2} & 0 & 1
\end{array} \right]$

$\displaystyle R_3 + R_2 \to R_3$

$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
0 & 1 & \displaystyle \frac{9}{2} & \displaystyle \frac{-1}{2} & 1 & 0 \\
0 & 0 & 1 & -2 & 1 & 1
\end{array} \right]$

$\displaystyle R_2 - \frac{9}{2} R_3 \to R_2$

$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & \displaystyle \frac{3}{2} & \displaystyle \frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & \displaystyle \frac{17}{2} & \displaystyle \frac{-7}{2} & \displaystyle \frac{-9}{2} \\
0 & 0 & 1 & -2 & 1 & 1
\end{array} \right]$

$\displaystyle R_1 - \frac{3}{2} R_3 \to R_1$

$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 0 & 0 & \displaystyle \frac{7}{2} & \displaystyle \frac{-3}{2} & \displaystyle \frac{-3}{2} \\
0 & 1 & 0 & \displaystyle \frac{17}{2} & \displaystyle \frac{-7}{2} & \displaystyle \frac{-9}{2} \\
0 & 0 & 1 & -2 & 1 & 1
\end{array} \right]$

So the inverse is

$\displaystyle A^{-1} = \left[ \begin{array}{ccc}
\displaystyle \frac{7}{2} & \displaystyle \frac{-3}{2} & \displaystyle \frac{-3}{2} \\
\displaystyle \frac{17}{2} & \displaystyle \frac{-7}{2} & \displaystyle \frac{-9}{2} \\
-2 & 1 & 1
\end{array} \right]$

Then,


$
\begin{equation}
\begin{aligned}

X =& A^{-1} B
\\
\\
X =& \left[ \begin{array}{ccc}
\displaystyle \frac{7}{2} & \displaystyle \frac{-3}{2} & \displaystyle \frac{-3}{2} \\
\displaystyle \frac{17}{2} & \displaystyle \frac{-7}{2} & \displaystyle \frac{-9}{2} \\
-2 & 1 & 1
\end{array} \right] \left[ \begin{array}{c}
5 \\
0 \\
5
\end{array} \right]
\\
\\
X =& \left[ \begin{array}{c}
\displaystyle \frac{7}{2} \cdot 5 + \left( \frac{-3}{2} \right) \cdot 0 + \left( \frac{-3}{2} \right) \cdot 5 \\
\displaystyle \frac{17}{2} \cdot 5 + \left( \frac{-7}{2} \right) \cdot 0 + \left( \frac{-9}{2} \right) \cdot 5 \\
-2 \cdot 5 + 1 \cdot 0 + 1 \cdot 5
\end{array} \right]
\\
\\
X =& \left[ \begin{array}{c}
10 \\
20 \\
-5
\end{array} \right]


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...