Wednesday, July 20, 2016

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 36

We need to find (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$ and state their domains



$f(x) = \frac{x}{1+x} , \qquad \quad g(x) = \sin 2x$


$
\begin{equation}
\begin{aligned}
\text{(a)} \qquad \quad f \circ g =& f(g(x))\\


\displaystyle f(\sin 2x)=& \frac{x}{1+x}
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$}\\


\end{aligned}
\end{equation}
$


$\boxed{\displaystyle f \circ g = \frac{\sin 2x}{1+ \sin 2x}}$

$\boxed{ \text{The domain of this function is } \displaystyle (-\infty, \frac{-\pi}{4}) \bigcup\displaystyle(\frac{-\pi}{4}, \infty)}$


$
\begin{equation}
\begin{aligned}
\text{(b)} \qquad \quad f \circ g =& g(f(x))\\


\displaystyle g \left(\frac{x}{1+x}\right) =& \sin 2x
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$}\\

\displaystyle g \left(\frac{x}{1+x}\right) =& \sin 2\left(\frac{x}{1+x}\right)
&& \text{ Simplify the equation }
\end{aligned}
\end{equation}
$



$\boxed{\displaystyle f \circ g= \sin \left(\frac{2x}{1+x}\right)}$


$\boxed{ \text{The domain of this function is } (-\infty, -1) \bigcup(-1,\infty)}$




$
\begin{equation}
\begin{aligned}
\text{(c)} \qquad \quad f \circ f =& f(f(x))\\


\displaystyle f\left(\frac{x}{1+x}\right) =& \frac{x}{1+x}
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$}\\

\displaystyle f\left(\frac{x}{1+x}\right)=& \frac{\frac{x}{1+x}}{1+\frac{x}{1+x}}
&& \text{ Get the LCD of the numerator and the denominator}\\

\displaystyle f\left(\frac{x}{1+x}\right)=& \frac{\frac{x}{\cancel{1+x}}}{\frac{1+x+x}{\cancel{1+x}}}
&& \text{ Cancel out and combine like terms}

\end{aligned}
\end{equation}
$


$\boxed{\displaystyle f \circ f = \frac{x}{2x+1}}$

$\boxed{\text{ The domain of this function is } \displaystyle(-\infty, \frac{-1}{2}) \bigcup \displaystyle(\frac{-1}{2},\infty)}$


$
\begin{equation}
\begin{aligned}
\text{(d)} \qquad \quad g \circ g =& g(g(x))\\

g(\sin 2x)=& \sin 2x
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$}\\

g(\sin 2x)=& \sin 2(\sin 2x)
&& \text{ Simplify equation}

\end{aligned}
\end{equation}
$


$\boxed{g \circ g= \sin(2 \sin 2x)}$


$\boxed{\text{ The domain of this function is }(-\infty,\infty)}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...