Saturday, July 8, 2017

y = C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x) Determine whether the function is a solution of the differential equation y^((4)) - 16y = 0

Given,
y = C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x)
let us find
y'=(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))'
= 2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x)
y''=(2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x))'
=4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x)
y'''=(4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x))'
=8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x)
y''''=(8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x))'
=(16 C_1e^2x +(-8)(-2) C_2e^(-2x) -8(-2) C_3sin(2x) +8(2) C_4 cos(2x))
=(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))
So lets check whether y'''' -16 y =0 or not
(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-16(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))
=(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))
=0
so,
y'''' -16 y =0

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...