Wednesday, February 27, 2019

Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 44

Determine the derivative of $\displaystyle y = x \tan h^{-1} x + \ln \sqrt{1 - x^2}$. Simplify where possible.


$
\begin{equation}
\begin{aligned}

y' =& \frac{d}{dx} (x \tan h^{-1} x) + \frac{d}{dx} (\ln \sqrt{1 - x^2})
\\
\\
y' =& \left[ x \cdot \frac{d}{dx} (\tan h^{-1} x) + \tan h^{-1} x \cdot \frac{d}{dx} (x) \right] + \frac{1}{\sqrt{1 - x^2}} \cdot \frac{d}{dx} (\sqrt{1 - x^2})
\\
\\
y' =& x \cdot \frac{1}{1 - x^2} + \tan h^{-1} x + \frac{1}{(1 - x^2)^{\frac{1}{2}}} \cdot \frac{d}{dx} (1 - x^2)^{\frac{1}{2}}
\\
\\
y' =& \frac{x}{1 - x^2} + \tan h^{-1} x + \frac{1}{(1 - x^2)^{\frac{1}{2}}} \cdot \frac{1}{2} (1 - x^2)^{\frac{-1}{2}} \cdot \frac{d}{dx} (1 - x^2)
\\
\\
y' =& \frac{x}{1 - x^2} + \tan h^{-1} x + \frac{1}{(1 - x^2)^{\frac{1}{2}}} \cdot \frac{1}{\cancel{2}} (1 - x^2)^{\frac{-1}{2}} \cdot -\cancel{2} x
\\
\\
y' =& \frac{x}{1 - x^2} + \tan h^{-1} x - \frac{x}{(1 - x^2)^{\frac{1}{2}} (1 - x^2)^{\frac{1}{2}}}
\\
\\
y' =& \cancel{ \frac{x}{1 - x^2} } + \tan h^{-1} x - \cancel{ \frac{x}{1 - x^2} }
\\
\\
y' =& \tan h^{-1} x

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...