Thursday, August 1, 2019

Beginning Algebra With Applications, Chapter 1, 1.2, Section 1.2, Problem 172

Determine which statement is true for all real numbers.

a.) $||x| - |y|| \leq |x| - |y|$

b.) $||x| - |y|| = |x| - |y|$

c.) $||x| - |y|| \geq |x| - |y|$


If we let $x = -2$ and $y = 3$, then we substitute this to the given statement. We have

a.)


$
\begin{equation}
\begin{aligned}

||-2| - |3|| & \leq |-2|-|3|
\\
|2-3| & \leq 2-3
\\
|-1| & \leq -1
\\
1 & \leq -1

\end{aligned}
\end{equation}
$


The statement is false.

b.)


$
\begin{equation}
\begin{aligned}

||-2| - |3|| =& |-2| - |3|
\\
|2-3| =& 2-3
\\
|-1| =& -1
\\
1 =& -1

\end{aligned}
\end{equation}
$


The statement is false.

c.)


$
\begin{equation}
\begin{aligned}

||-2| - |3|| \geq & |-2| - |3|
\\
|2 -3| =& 2-3
\\
|-1| =& -1
\\
1 \geq & -1

\end{aligned}
\end{equation}
$


The statement is true.

So the statement that is true for all real numbers is $||x| - |y|| \geq |x| - |y|$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...