Monday, February 13, 2012

Calculus of a Single Variable, Chapter 5, 5.6, Section 5.6, Problem 57

Recall that the derivative of y with respect to is denoted as y' or (dy)/(dx) .
For the given equation: y = arctan(x) +x/(1+x^2) ,
we may apply the basic property of derivative:
d/(dx) (u+v) =d/(dx) (u) + d/(dx)(v)
where we take the derivative of each term separately.
Then the derivative of y will be:
y' = d/(dx)(arctan(x) +x/(1+x^2))
y' =d/(dx)(arctan(x)) +d/(dx)(x/(1+x^2))
To find the derivative of the first term:d/(dx)(arctan(x)) , recall the basic derivative formula for inverse tangent as:
d/(dx) (arctan(u)) = ((du)/(dx))/1+u^2
With u = x and du=dx or (du)/(dx) =1 , we will have:
d/(dx)(arctan(x)) =1 /(1+x^2)

For the derivative of the second term:d/(dx)(x/(1+x^2)) , we apply the
Quotient Rule for derivative: d/(dx) (u/v)= (u' * v- v'*u)/v^2 .
Based fromd/(dx)(x/(1+x^2)) , we let:
u = x then u' = 1
v = 1+x^2 then v'=2x
v^2= (1+x^2)^2
Applying the Quotient rule,we get:
d/(dx)(x/(1+x^2)) = (1*(1+x^2)-(x)(2x))/(1+x^2)^2
d/(dx)(x/(1+x^2)) =(1+x^2-2x^2)/(1+x^2)^2
Combining like terms at the top:
d/(dx)(x/(1+x^2))= (1-x^2)/(1+x^2)^2
For the complete problem:
y' =d/(dx)(arctan(x)) +d/(dx)(x/(1+x^2))
y' =1/(1+x^2) +(1-x^2)/(1+x^2)^2

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...