Tuesday, February 14, 2012

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 50

Solve the Logarithmic Equation $\log_3 ( x + 15 ) - \log_3 ( x - 1) = 2$ for $x$.

$
\begin{equation}
\begin{aligned}
\log_3 ( x + 15 ) - \log_3 ( x - 1) &= 2\\
\\
\log_3 \frac{x+15}{x-1} &= 2 && \text{Laws of Logarithms } \log_a \frac{A}{B} = \log_a A - \log_a B\\
\\
3^{\log_3 \frac{x+15}{x-1}} &= 3^2 && \text{Raise 3 to each side}\\
\\
\frac{x+15}{x-1} &= 9 && \text{Property of log}\\
\\
x + 15 &= 9 (x - 1) && \text{Multiply each side by } x -1\\
\\
x + 15 &= 9x - 1 && \text{Distributive property}\\
\\
15 + 1 &= 9x - x && \text{Combine like terms}\\
\\
16 &= 8x && \text{Solve for } x\\
\\
x &= 2 && \text{Divide by 8}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...