Friday, February 3, 2012

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 22

Determine the area of the largest rectangle that can be inscribed in the ellipse $\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} =1$.



Area of the square is $A = 2x(2y) = 4xy$
We can rewrite the equation of the ellipse as...
$\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \quad \Longleftarrow \quad \frac{b^2x^2 + a^2 y^2}{a^2b^2} =1$

Solving for $y$,

$
\begin{equation}
\begin{aligned}
y^2 &= \frac{a^2b^2 - b^2x^2}{a^2} = \frac{b-(a^2-x^2)}{a^2}\\
\\
y &= \sqrt{\frac{b^2}{a^2} (a^2 - x^2)}\\
\\
y &= \frac{b}{a} \sqrt{a^2 - x^2}
\end{aligned}
\end{equation}
$

Substituting the value of $y$ to the equatioon of the area.
$\displaystyle A = 4x \left( \frac{a}{b} \sqrt{a^2 - x^2} \right)$
Taking the derivative of the area, we get...
$\displaystyle A' = \frac{4b}{a} \left[ x \left( \frac{1}{2\sqrt{a^2 - x^2}} \right) (-2x) + (1) \sqrt{a^2 - x^2} \right]$

when $A' = 0$

$
\begin{equation}
\begin{aligned}
0 &= \frac{-x^2}{\sqrt{a^2 - x^2}} + \sqrt{a^2 - x^2}\\
\\
0 &= \frac{-x^2 + a^2 - x^2}{\sqrt{a^2 - x^2}}\\
\\
0 &= -2x^2+a^2\\
\\
2x^2 = a^2
\end{aligned}
\end{equation}
$


Then, the critical number is $\displaystyle x = \sqrt{\frac{a^2}{2}} = \frac{a}{\sqrt{2}}$
if $\displaystyle x = \frac{a}{\sqrt{2}}$, then

$
\begin{equation}
\begin{aligned}
y &= \frac{b}{a} \sqrt{a^2 - \left( \frac{a}{\sqrt{2}} \right)^2} = \frac{b}{a} \sqrt{a^2 - \frac{a^2}{2}} = \frac{b}{a} \sqrt{\frac{a^2}{2}}\\
&= \frac{b}{\cancel{a}} \left( \frac{\cancel{a}}{\sqrt{2}} \right) = \frac{b}{\sqrt{2}}
\end{aligned}
\end{equation}
$


Therefore, the largest area that can be described in the ellipse is $\displaystyle A = 4xy = 4 \left( \frac{a}{\sqrt{2}} \right) \left( \frac{b}{\sqrt{2}} \right) = 2ab$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...